Homework 4

1. Let $\left\{a_{n}\right\}$ be a sequence of non-negative real numbers. Assume that the series $\sum_{n=1}^{\infty} a_{n}$ converges and the sum is s. Then show that $s=\sup \left\{s_{n}: n \in \mathbb{N}\right\}$, where s_{n} denotes the nth partial sum of the series.
2. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences such that $a_{n}=b_{n+1}-b_{n}$. Show that the series $\sum a_{n}$ converges if and only if $\lim _{n \rightarrow \infty} b_{n}$ exists.
3. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences.
(a) If $b_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=l>0$, then show that either both series $\sum a_{n}$ and $\sum_{n} b_{n}$ converge or both diverge.
(b) Assume that $a_{n}>0, b_{n}>0$ and $\frac{a_{n+1}}{a_{n}} \leq \frac{b_{n+1}}{b_{n}}$, $\forall n$. Show that if $\sum_{n} b_{n}$ converges then $\sum_{n} a_{n}$ converges.
(c) Let $a_{n} \geq 0$ and $b_{n} \geq 0$. If series $\sum_{n} a_{n}$ and $\sum_{n} b_{n}$ converge, then show that the series $\sum \sqrt{a_{n} b_{n}}$ converges.
4. Let $\left\{a_{n}\right\}$ be a monotonically decreasing sequence of non-negative real numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$. If $\sum_{n} a_{n}$ is convergent then show that $\lim _{n \rightarrow \infty} n a_{n}=0$.
5. Let $\sum_{n} a_{n}$ be a convergent series of non-negative real numbers. Show that
(a) $\sum_{n} a_{n}^{2}$ is convergent.
(b) $\sum_{n} \frac{\sqrt{a_{n}}}{n}$ is convergent.
6. If $\sum_{n} a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\sum_{n} a_{n} b_{n}$ converges.
7. Let $\left\{a_{n}\right\}$ be a monotonically decreasing sequence such that $\lim _{n \rightarrow \infty} a_{n}=0$. Show that $\sum_{n} a_{n} \sin n x$ converges for all $x \in \mathbb{R}$ and $\sum_{n} a_{n} \cos n x$ converges for all $x \in \mathbb{R} \backslash\{2 n \pi$: $n \in \mathbb{Z}\}$.
8. Prove that the Cauchy product of two absolutely convergent series is absolutely convergent.
9. Find the radius of convergence of each of the following power series
(a) $\sum_{n=1}^{\infty} n^{3} z^{n}$
(b) $\sum_{n=1}^{\infty} \frac{2^{n}}{n!} z^{n}$
(c) $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}} z^{n}$
(d) $\sum_{n=1}^{\infty} \frac{n^{3}}{3 n} z^{n}$

MTH 303 Homework 4 (Continued)
10. Suppose that the coefficients of the power series $\sum_{n=1}^{\infty} c_{n} z^{n}$ are integers, infinitely many of which are distinct from zero. Prove that the radius of convergence is at most 1.
11. If $\sum_{n} a_{n}$ is a conditionally convergent series, then prove that the series of its positive terms and the series of its negative terms are both divergent.
12. Consider the alternating series $\sum_{n} \frac{(-1)^{n+1}}{n}$ and one of its rearrangement

$$
1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\ldots
$$

in which two positive terms are always followed by one negative term. Let s be the sum of the original series, then show that the rearranged series converges to a number different from s.

